Arthroscopic Remplissage for Humeral Head Defects

Kevin J. McHale, MD,* Min Jung Park, MD, MMSc,† and John D. Kelly, IV, MD*

Summary: Hill-Sachs lesions play a major role in recurrent shoulder instability following arthroscopic Bankart repairs. The arthroscopic remplissage procedure has been shown to be an important adjunct to routine Bankart repair to address humeral head defects that contribute to recurrent shoulder instability. This article reviews the surgical indications for performing arthroscopic remplissage and provides a detailed discussion of its surgical technique.

Key Words: glenohumeral instability—arthroscopy—remplissage—Hill-Sachs lesion.

(Tech Orthop 2015:30: 39–41)

In 1940, Hill and Sachs characterized the eponymous Hill-Sachs lesion, the bony defect in the posterosuperior humeral head resulting from impaction of the soft humeral head against the hard anteroinferior glenoid rim during anterior shoulder dislocation. Since that time, the important role played by Hill-Sachs lesions in glenohumeral instability has become much better understood. Glenohumeral bone deficiency has been correlated with recurrent shoulder instability following arthroscopic capsulolabral repair in a number of clinical studies. In response to this problem, a spectrum of interventions have emerged for the management of large Hill-Sachs lesions including humeroplasty, remplissage, allograft reconstruction, allograft mosaicplasty, rotational osteotomy, partial resurfacing, and prosthetic replacement. Remplissage, which means “filling” in French, involves the fixation of the infraspinatus and posterior capsule to Hill-Sachs lesions to prevent humeral bony defects from engaging with the glenoid rim. Several clinical studies have reported decreased recurrence rates of glenohumeral instability with the use of arthroscopic remplissage as an adjunct to standard Bankart repairs when large engaging Hill-Sachs lesions are present.

PREOPERATIVE EVALUATION AND INDICATIONS

Arthroscopic remplissage is a treatment option that should be considered when evaluating patients with recurrent anterior shoulder instability. Recurrent anterior glenohumeral instability can be diagnosed on the basis of a history of multiple shoulder dislocations or subluxations with physical examination findings consistent with anteroinferior instability. Examination maneuvers that can be particularly helpful in reaching this diagnosis include the apprehension test, relocation test, and load-and-shift test. Apprehension in lower degrees of abduction offers a hint that a significant engaging Hill-Sachs lesion is present. All patients should be evaluated with preoperative radiographic and MRI imaging. When reviewing preoperative imaging, the physician should pay particular attention to the presence of bony defects involving the humeral head and glenoid that may contribute to instability. Patients with a history and physical examination findings consistent with recurrent anteroinferior instability and imaging studies that reveal large humeral head defects with glenoid bone loss <25% are excellent candidates for an arthroscopic remplissage procedure performed in conjunction with a routine capsulolabral repair. Patients with Hill-Sachs lesions associated with glenoid bone loss >25% are better managed with an open Latarjet procedure. The presence of a humeral head defect that engages the anterior glenoid rim within the position of athletic function should be confirmed at the time of arthroscopy before proceeding with remplissage.

SURGICAL TECHNIQUE

The patient is placed in the lateral decubitus position with the shoulder held in 45-degree abduction and 15-degree forward flexion using 10 pounds of traction. Examination under anesthesia is performed to assess shoulder stability on passive range of motion, particularly in abduction and external rotation. A standard posterior portal is established slightly lateral to the convexity of the humeral head to allow for complete visualization of the anterior capsular injury. An anteroinferior portal is then created within the rotator interval under direct visualization. An anterosuperior portal is also established at the anterior margin of the acromion, superoposterior to the biceps tendon. This portal is used for visualization of the humeral

FIGURE 1. Hill-Sachs lesion: an anterosuperior portal established at the anterior margin of the acromion can provide excellent visualization of the humeral head defect. The Hill-Sachs lesion in this image is marked by the arrow.
defect (Fig. 1) and to assess the location of the posterior portal, which should be directly superior to the humeral head to facilitate anchor placement.

While viewing from the anterosuperior portal, the Hill-Sachs lesion is gently debrided with a shaver or thermal device to prepare for the remplissage and the size of the defect is measured using an arthroscopic probe. At this time, the anterior labrum and glenoid are also prepared for a routine capsulolabral repair; however, the Bankart repair should not be performed until after completion of the remplissage procedure. After adequate debridement, a double-loaded suture anchor is placed in the Hill-Sachs defect using the posterior portal (Fig. 2). The cannula is withdrawn external to the infraspinatus. A penetrating grasper is passed through the infraspinatus tendon and posterior capsule proximal to the initial portal entry site to grasp and pull 1 suture limb from the first pair with a bias to grab tissue lateral to the cannula in order to effect a better tenodesis. This step is then repeated to pull the suture limb from the other suture pair through the posterior capsule and infraspinatus tendon proximal to the initial portal site (Fig. 3). The inferior suture is first tied with the knot remaining extra-articular in the subdeltoid space. The superior set of sutures is next tied.

If multiple anchors are needed to complete the remplissage, the first anchor should be implanted and sutures passed before the implantation of an additional anchor. The optimal location of the initial anchor placement should be as far lateral and superior in the defect as possible to minimize the potential loss of external rotation and maximize capsular volume reduction and soft-tissue fill of the Hill-Sachs defect. When the decision is made that a second anchor is necessary to achieve adequate fill of the defect, the same skin incision is used but a sharp obturator is placed to create a new path for the cannula. If the skin incision will not suffice, another more proximal and lateral incision is made to facilitate access. The sutures are tied in succession beginning with the inferior suture. Additional anchors may then be placed as necessary. It is important to implant distal anchors before the proximal one so that visualization of the “fill” is optimized. Once all anchors are placed and sutures are tied, the infraspinatus tendon and posterior capsule should be fixed to the prepared bony surface of the Hill-Sachs lesion (Fig. 4). After completion of the remplissage procedure, the surgeon can proceed with a routine Bankart repair. If remplissage is done after performing a Bankart repair, there is a high likelihood of failure as the posterior shift resulting from remplissage may induce anterior capsular laxity.

DISCUSSION

The arthroscopic remplissage procedure is an important adjunct to routine Bankart repairs for the surgical management of patients with recurrent shoulder instability primarily due to large Hill-Sachs lesions. This surgical technique offers significant advantages when compared with alternative methods to address humeral bony defects associated with glenohumeral instability. The all-arthroscopic nature of the remplissage avoids the morbidity associated with open surgical interventions. Arthroscopic remplissage can be performed in the acute and chronic setting and can be performed in conjunction with Bankart repair with minimal additional surgical time. In addition, this technique does not require the use of autograft or allograft bone. A case series performed at our institution by

FIGURE 2. Anchor placement: a double-loaded suture anchor is placed in the Hill-Sachs defect using the posterior portal.

FIGURE 3. Suture placement: a penetrating grasper is utilized to pass suture limbs through the infraspinatus tendon and posterior capsule proximal and distal to the initial portal entry site.

FIGURE 4. Completion of remplissage: after inserting all suture anchors and tying all sutures, the infraspinatus tendon and posterior capsule are fixed to the prepared bony surface of the Hill-Sachs lesion and “fill” the defect as shown in this image.
Park et al reported improved function, diminished pain, and patient satisfaction in 85% of patients treated with an all-arthroscopic remplissage and Bankart repair. In this patient population, episodes of recurrent instability were reported by only 3 of the 20 patients at 2-year follow-up. Many of these patients had large bone defects and would be otherwise considered for a Latarjet procedure.

Complications of arthroscopic remplissage have been reported, including persistent posterosuperior shoulder pain in 5 of the 15 patients treated with arthroscopic remplissage in 1 clinical study and 1 case report of significant loss of external rotation following arthroscopic remplissage. However, several studies have not demonstrated a correlation between remplissage and persistent shoulder pain and have shown no significant loss of shoulder range of motion following this procedure. We believe that the use of arthroscopic remplissage is an effective means of addressing shoulder instability when used as an adjunct to routine capsulolabral repairs in carefully selected patients with large Hill-Sachs lesions and no significant glenoid bony defect.

REFERENCES